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a b s t r a c t

The 8-SF5 analog of mefloquine was synthesized in nine steps from commercially available starting mate-
rials and in five steps from a novel ortho-SF5–substituted aniline intermediate.

� 2010 Elsevier Ltd. All rights reserved.
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Mefloquine (1)
The geographic extension of Plasmodium falciparum necessitates
the development of new antimalarial drugs that are active against
resistant parasite strains.1 Mefloquine (1) has been shown to have
high efficacy for both treatment and prophylaxis of chloroquine-
resistant malaria (Fig. 1).2 However, its present potential is limited
due to its adverse central nervous system (CNS) effects, including
anxiety, depression, hallucinations, and seizures.3 One explanation
for these undesirable neurological events may be the ability of
mefloquine to cross the blood–brain barrier, accumulate in the
brain, and interact with several CNS targets.4 However, despite
the relatively high incidence of these side effects, mefloquine con-
tinues to be used by virtue of its long half-life, relative safety in
pregnancy, activity against chloroquine-resistant strains, and the
absence of effective alternatives.

In order to ameliorate the neurotoxicity profile of mefloquine,
we set out to develop analogs that are less readily absorbed
through the blood–brain barrier but retain the antimalarial profile
of the quinoline methanol scaffold.5 By replacing the 8-trifluoro-
methyl (CF3) group in mefloquine with 6- and 7-pentafluorosulfa-
nyl (SF5) substituents, respectively, we previously prepared two
SF5-analogs that showed equivalent or improved activities com-
pared to the parent compound 1 (Fig. 1, compounds 2 and 3).5

Interestingly, 2 and 3 also exhibited better activity and selectivity
than their corresponding 6- and 7-CF3-congeners, 4 and 5. These
encouraging results demonstrate the effective biological mimicry
of the CF3–SF5 switch in quinoline containing antimalarial drugs
and prompted us to prepare the synthetically considerably
demanding 8-SF5-congener 6 of mefloquine.

Introduction of an SF5 group into an organic compound has
been of interest in the design of new materials, pharmaceuticals,
and agrochemicals.6 Compared to CF3, the symmetrical, octahedral
SF5 group demonstrates higher electronegativity and hydrophobic-
ll rights reserved.
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ity, a substantially larger steric effect, and a slightly higher chem-
ical stability.7 However, due to the relative dearth of practical high-
yielding methods for introducing this highly fluorinated functional
group, to date there are still only a few SF5-containing building
blocks accessible.8 For pentafluorosulfanylbenzenes, oxidative
fluorination of aromatic disulfides is still the generally preferred
procedure, despite its origin dating back half a century ago.9 Most
of the recent routes involve the use of expensive silver(II) fluoride
or hazardous fluorine gas, and the yields are generally low
(<40%).10 Furthermore, the disulfide method is only applicable to
a few substituted benzenes.

In contrast to meta- and para-nitro-SF5-benzene, the corre-
sponding ortho-nitro product is not accessible by the disulfide
procedure, presumably because the steric hindrance from the
ortho-nitro group prevents further fluorination of the SF3 interme-
diate to give the SF5 moiety.11 To date, the only substrate contain-
ing an ortho-substituent known to be suitable for direct
fluorination is the bis-ortho-fluorodiphenyl disulfide.12 The ortho-
fluorine substituent can then be converted in moderate yield into
an amino group by nucleophilic aromatic substitution.
5: R1 = H, R2 = CF3, R3 = H

6: R1 = SF5, R2 = H, R3 = H

Figure 1. Mefloquine and its analogs, including the new analog 6.
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An important first objective of the present study was the prep-
aration of the novel ortho-SF5-aniline 7 from commercially avail-
able 3-SF5-phenol 8 en route to the 8-SF5 mefloquine analog 6
(Fig. 2).

We envisioned installing the ortho-amino group by the regiose-
lective nitration of a suitable pentafluorosulfanyl arene, followed
by reduction.13 Accordingly, we chose the commercially available
starting material 8 as the nitration substrate (Scheme 1). However,
the para-regioselectivity of the nitration of the phenol was poor,
since the hydroxyl group is a strong ortho-directing substituent.
To diminish the ortho-effect, 8 was converted into the trifluoro-
methyl sulfonate in 91% yield, and nitration now proceeded in
79% yield to give exclusively the desired product 9 with the NO2

group in the para-position to the TfO moiety. Subsequent Pd-cata-
lyzed reduction furnished the ortho-SF5-aniline 10 in 83% yield.

Removal of the triflate in 10 proved not to be trivial. Initial at-
tempts using Pd(II) salts and hydrogen transfer conditions led
either to the reductive cleavage of the SF5 group or to unspecific
decomposition. However, when a Pd(0) catalyst was employed in
the presence of formic acid and triethylamine,14 the desired prod-
uct 7 was formed. In our hands, the free base 7 was surprisingly
unstable in a neat (oily) form. However, we were able to obtain a
crystalline, stable storage form for 7 by converting it into its
corresponding hydrochloride salt. When aniline 7 was immedi-
ately subjected to a Conrad–Limpach reaction with 4,4,4-trifluoro-
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Scheme 1. Synthesis of 8-SF5 substituted mefloquine analog 6.
acetoacetate (11) in polyphosphoric acid, the somewhat difficult to
purify 8-pentafluorosulfanylquinoline intermediate 12 was ob-
tained in 70% yield and ca. 90% purity. The previously used chlori-
nation conditions with phosphorous oxychloride at 110 �C proved
to be too harsh for this quinoline,5 but the milder thionyl chloride
afforded the product in 86% yield. After nucleophilic aromatic sub-
stitution with 2-pyridylacetonitrile, oxidation of the carbon-nitrile
bond and Pt-catalyzed reduction of the ketone and pyridine moie-
ties in 13 proceeded in moderate to good yields to afford the target
molecule 6.15 This sequence was used to prepare 6 on 200 mg
scale.16–21

In conclusion, we have developed an efficient synthetic route to
a novel 8-pentafluorosulfanyl analog of mefloquine that utilizes a
new preparation of ortho-SF5 aniline 7. Access to the latter com-
pound is of general utility since it can readily be converted into
other SF5-containing heterocyclic building blocks. The potency
and selectivity of 6 against P. falciparum strains as well as its CNS
effects are currently being evaluated and will be reported in due
course.
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(6.0 mL) and DMF (3.0 mL) was treated for 10 min under argon gas with a
solution of 2-pyridylacetonitrile (0.18 mL, 1.66 mmol) in toluene (5.0 mL) and
DMF (1.5 mL). The resulting yellow-brown colored suspension was stirred for
1 h at the same temperature. A solution of 4-chloro-8-pentafluorosulfanyl-2-
(trifluoromethyl)quinoline (0.458 g, 1.28 mmol) in toluene (8.0 mL) and DMF
(3.0 mL) was added dropwise to the suspension over 5 min. After 0.5 h, the
reaction mixture was quenched with ice water (50 mL), extracted with EtOAc,
washed with water (three times) and brine, dried (MgSO4), and concentrated.
The orange residue was purified by chromatography on SiO2 (25% EtOAc/
hexanes) to provide 13 (0.450 g, 80%) as a light orange solid: Mp 146.2 �C (dec);
IR (Neat) 2876, 1368, 1275, 1179, 1144, 1122, 846, 833, 793, 654 cm�1; 1H NMR
(CDCl3) d 8.61 (ddd, 1H, J = 0.9, 1.8, 5.1 Hz), 8.47 (d, 1H, J = 8.7 Hz), 8.41 (dd, 1H,
J = 0.9, 8.1 Hz), 8.10 (s, 1H), 7.79 (dd, 1H, J = 8.1, 8.4 Hz), 7.78 (ddd, 1H, J = 2.1, 7.8,
7.8 Hz), 7.46 (d, 1H, J = 8.1 Hz), 7.33 (ddd, 1H, J = 0.9, 5.1, 7.5 Hz), 6.07 (s, 1H); 13C
NMR (CDCl3) d 153.0, 152.4 (app quintet, J = 15.8 Hz), 150.6, 148.7 (q,
J = 36.0 Hz), 143.2, 141.9, 138.4, 132.6 (app t, J = 5.3 Hz), 128.6, 128.2, 127.3,
124.3, 122.6, 120.9 (q, J = 273.8 Hz), 117.5, 117.4, 43.4; 19F NMR (CDCl3) d 83.7
(quintet, J = 157.9 Hz), 71.6 (d, J = 169.2 Hz), �68.1; EIMS m/z 439 (M+, 60), 428
(25), 273 (25), 89 (30), 78 (100); HRMS (EI) m/z calcd for C17H9N3F8S 439.0389,
found 439.0388.

21. Experimental protocol and spectral data for d-(2-piperidyl)-8-
pentafluorosulfanyl-(2-trifluoromethyl)-4-quinoline-methanol (6). A
suspension of 13 (197 mg, 0.448 mmol) in acetic acid (2.6 mL) was treated
dropwise at room temperature with H2O2 (0.35 mL, 4.48 mmol). The reaction
mixture was placed in a preheated (75 �C) oil bath until it turned into light
yellow. The mixture was quenched with ice water (10 mL), extracted with
diethyl ether (10 mL), washed with sat. NaHCO3 solution and brine, dried
(MgSO4), and concentrated. The yellow residue was purified by
chromatography on SiO2 (16% EtOAc/hexanes) to provide 2-pyridyl-8-
pentafluorosulfanyl-(2-trifluoromethyl)-4-quinolylketone (171 mg, 89%) as a
colorless solid: Mp 98.9–99.7 �C; IR (neat) 1687, 1271, 1245, 1211, 1182, 1137,
1114, 844, 829, 759, 731 cm�1; 1H NMR (CDCl3) d 8.62 (ddd, 1H, J = 0.9, 1.8,
4.5 Hz), 8.42 (dd, 1H, J = 1.2, 7.8 Hz), 8.38 (ddd, 1H, J = 0.9, 0.9, 8.1 Hz), 8.12 (dd,
1H, J = 1.2, 8.4 Hz), 8.04 (ddd, 1H, J = 1.8, 7.8, 7.8 Hz), 7.90 (s, 1H), 7.72 (app t,
1H, J = 8.1 Hz), 7.60 (ddd, 1H, J = 1.2, 4.5, 7.5 Hz); 13C NMR (CDCl3) d 194.4,
152.9, 151.8 (app t, J = 15.0 Hz), 149.8, 147.8 (q, J = 35.3 Hz), 147.2, 141.6,
137.8, 132.4 (app t, J = 5.3 Hz), 130.6, 128.5, 127.8, 127.1, 124.4, 121.1 (q,
J = 273.8 Hz), 117.2; 19F NMR (CDCl3) d 84.1 (quintet, J = 157.9 Hz), 71.7 (d,
J = 149.5 Hz), �68.0; EIMS m/z 428 (M+, 65), 399 (100), 273 (95), 272 (30);
HRMS (EI) m/z calcd for C16H8N2OF8S 428.0230, found 439.0215.
A solution of 2-pyridyl-8-pentafluorosulfanyl-(2-trifluoro-methyl)-4-
quinolylketone (83.2 mg, 0.194 mmol) in conc. hydrochloric acid (79 mL,
0.971 mmol) and abs EtOH (2.0 mL) was treated with platinum oxide
(4.4 mg, 0.0194 mmol). The flask was purged with hydrogen twice and
hydrogenated under balloon pressure of H2. After 2 h, no alcohol
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intermediate appeared on TLC (50% EtOAc/hexanes to check for the alcohol
intermediate by UV, followed by 75% dichloromethane/EtOH to check for the
final product by UV and ninhydrin staining) anymore. The mixture was filtered
through a pad of florisil, concentrated, extracted with diethyl ether (20 mL),
washed with sat. NaHCO3 and NaOH aqueous solution (pH 13) and brine, dried
(MgSO4), and concentrated. The yellow residue was purified by
chromatography on SiO2 (5% triethylamine in EtOAc, then 5% triethylamine
and 5% MeOH in EtOAc). The crude product (65.0 mg) was crystallized from
MeOH to obtain 6 (40.0 mg, 47%) as a colorless solid in a dr >20:1: Mp 182.0 �C
(dec); IR (Neat) 3088, 2937, 2600 (br), 1422, 1366, 1267, 1224, 1183, 1113,
846, 826, 785, 721, 652 cm�1; 1H NMR (acetone-d6, 600 MHz) d 8.75 (d, 1H,
J = 8.4 Hz), 8.58 (d, 1H, J = 7.8 Hz), 8.19 (s, 1H), 7.97 (dd, 1H, J = 7.8, 8.4 Hz), 5.58
(d, 1H, J = 3.6 Hz), 3.03 (ddd, 1H, J = 3.0, 4.8, 10.8 Hz), 2.98 (app d, 1H,
J = 12.0 Hz), 2.56 (dt, 1H, J = 3.0, 12.0 Hz), 1.72 (app d, 1H, J = 12.6 Hz), 1.47
(app d, 1H, J = 12.6 Hz), 1.42 (app d, 1H, J = 12.6 Hz), 1.39–1.22 (m, 2H), 1.57
(tq, 1H, J = 3.6, 13.2 Hz); 13C NMR (acetone-d6, 600 MHz) d 154.5, 152.1 (app
quintet, J = 13.5 Hz), 148.4 (q, J = 34.5 Hz), 141.7, 133.1 (app t, J = 4.5 Hz), 131.0,
129.1, 127.9, 122.5 (q, J = 273.0 Hz), 116.5, 73.5, 62.3, 47.6, 27.3, 27.0, 25.1; 19F
NMR (acetone-d6) d 86.6 (quintet, J = 150.2 Hz), 72.8 (d, J = 144.7 Hz), �67.1;
HRMS (ESI) m/z calcd for C16H17N2OF8S (M+H) 437.0934, found 437.0923.


	Synthesis of an 8-pentafluorosulfanyl analog of the antimalarial agent mefloquine
	Acknowledgments
	bibl3
	References and notes


